Abstract

The methane produced in peat soils can vary over the growing season due to variations in the supply of available substrate, the activity of the microbial community or changes in temperature. Our aim was to study how these factors regulate the methane production over the season from five different peat types of different botanical origin. Peat samples were collected on seven occasions between June and September. After each sampling, the peat soils were incubated at five different temperatures (7, 10, 15, 20 and 25 degrees C) without added substrate, or at 20 degrees C with added substrate (glucose, or H(2)/CO(2), or starch). Rates of methane production averaged over the season differed significantly (P<0.05, R(2)=0.76) among the five peat types, the minerotrophic lawn producing the highest rates, and the hummock peat producing the lowest. The seasonal average Q(10) values for each plant community varied between 4.6 and 9.2, the highest value being associated with the ombrotrophic lawn and the lowest value with the mud-bottom plant community. For the unamended peat samples, the rates of methane production from each plant community varied significantly (P<0.05) over the season. This implies that the quality of organic matter, in combination with changes in temperature, explains the seasonal variation in methane production. However, addition of saturating amounts of glucose, H(2)/CO(2) or starch at 20 degrees C significantly reduced the seasonal variation (P<0.05) in methane production in peat from the minerotrophic lawn, wet carpet and mud-bottom plant communities. This suggests that substrate supply (e.g. root exudates) for the micro-organisms also varied over the season at these sites. Seasonal variation in methane production rates was apparent in peat from the hummock and ombrotrophic lawn plant communities even after addition of substrates, suggesting that the active biomass of the anaerobic microbial populations at these sites was regulated by other factors than the ones studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.