Abstract

Purpose: Understanding the dynamics of mycorrhizal fungi in the Cerrado is fundamental for the adoption of conservation practices and for understanding the resilience of this biome in relation to long periods of drought. Thus, this work aimed to verify the dynamics of the mycorrhizal population in five phytophysiognomies of the Cerrado biome.Methods: The samples were taken from the Chapada dos Veadeiros National Park, a permanent preservation with native Cerrado vegetation without any anthropic influence. The five main phytophysiognomies of the Cerrado biome were chosen: the Campo Limpo, Campo Sujo, Cerrado Strictu Sensu, Cerradão, and Veredas. Rhizospherical soil samples were collected in both the wet and dry seasons. Spore density, mycorrhizal colonization rate, easily extractable glomalin, and associated mycorrhizal fungi genera were identified.Results: The values of spore density, mycorrhizal colonization rate, and glomalin were higher in the samples performed during the dry season compared to the samples performed in the rainy season. The same behavior was observed when comparing the different phytophysionomies.Conclusion: Mycorrhizal activity is higher in dry periods when compared to rainy periods. There is no specificity of genera of arbuscular mycorrhizal fungi within the Cerrado phytophysiognomies.

Highlights

  • Brazil is the largest country in Latin America and one of the world’s leading food producers

  • The mycorrhizal colonization rate recorded was 40.43% in the first sampling, which occurred in November at the beginning of the rainy season; 60.29% in the second sampling, which occurred in March, at the end of the rainy season; 78.43% in June, at the beginning of the dry season, and 62.47% in September, at the end of the dry season (Figure 2A)

  • With aspects that can be interpreted as adaptations to dry environments, the Cerrado’s landscape displays trees and shrubs with tortuous trunks; deep roots to improve efficiency in water absorption; thick, corky bark to reduce evapotranspiration loss; hardened, coriaceous, and bright surface leaves; and production of flowers and sprouts in the middle of the dry season, which confirms the vegetation of this biome were adapted to these climatic conditions (Goedert, 1989; Beuchle et al, 2015; Ferri, 2017)

Read more

Summary

Introduction

Brazil is the largest country in Latin America and one of the world’s leading food producers. Goiás, Tocantins, Bahia, Maranhão, Mato Grosso, Mato Grosso do Sul, Piauí, and Distrito Federal (Hunke et al, 2015) It includes three of the largest hydrographic basins in South America, with regular rainfall indexes that provide it with great biodiversity. The predominant soil class in this biome is Oxisols, which are deep soils of low natural fertility, acids, with intense weathering, rich in iron oxides, and aluminum, but deficient in phosphorus (dos Santos et al, 2013). Another important feature of the Cerrado is the climate, defined as humid tropical, with two well-defined seasons, a dry winter and humid summer. The dry season is usually between April and September and the wet season between October and March (Cardoso et al, 2015)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call