Abstract

The Karnataka coast is subjected to high wave activity during the southwest monsoon when most of the sandy beaches undergo erosion. Based on the littoral cell concept, the Karnataka coast is broadly divided into 14 major littoral cells and 26 stations are selected in the present study. WaveWatch III global wave model data at 0.5° interval were used to derive the nearshore wave characteristics from XBeach numerical model. The model results were validated with the measured wave rider buoy data of the Indian National Centre for Ocean Information Services. The beach orientation, nearshore slope, median sediment size, significant wave height, mean wave direction, and the peak wave period were used in the estimation of longshore sediment transport rate. The mean significant wave height along the Karnataka coast was about 0.86 m, wave direction was about 210° and peak wave period was about 13 sec. The wave height during southwest monsoon (June–September) was higher, post-monsoon (October–December) was moderate and pre-monsoon (January–May) was the calmest period. Direction of longshore sediment transport was southwards during pre- and post-monsoons when waves were from the south–southwest. Whereas, northwards during monsoon when the wave approach from west–southwest to west. The annual net longshore sediment transport rate estimated was about 0.65×106 m3 towards the south and the sediment budget investigation depicts the loss of 0.067×106 m3 during the study period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.