Abstract

Karst water, which provides approximately 25% of the world's drinking water, is especially vulnerable to anthropogenic pollutants. To determine the variations between high and low flow periods and the sources of dissolved sulfate (SO42-) in small karst basins, SO42- concentrations, stable sulfur and oxygen isotopes (δ34S-SO4 and δ18O-SO4), and oxygen isotopes of water (δ18O-H2O) were investigated in surface and groundwaters, during the high and low flow seasons, within the Babu subterranean stream basin. Analysis showed that: ① the water samples that were directly impacted by acid mine drainage exhibited high SO42- concentrations (≥250 mg·L-1) and significant seasonal variation, while the seasonal variation of non-AMD-impacted water with low SO42- concentrations was not significant. ② During the high flow season, the mean δ34S-SO4 and δ18O-SO4 values of surface water were -10.5‰ and 4.7‰, respectively, and -11.5‰ and 1.3‰ during the low flow period; the mean values of δ34S-SO4 and δ18O-SO4 in groundwater samples were -2.9‰ and 7.1‰ during the high flow period, respectively, and -3.2‰ and 6.2‰ during the low flow period. Both surface and groundwater samples exhibited higher δ34S-SO4 and δ18O-SO4 values during the high flow period than during the low flow period. ③ The values of δ34S-SO4 in the surface and groundwater samples were relatively stable, indicating that the sources of SO42- at specific sampling sites were stable.④ The main sources of SO42- in surface and groundwaters were rain, sulfide, and gypsum, accounting for 13%, 40%, and 47%, respectively, of SO42- in samples taken from the basin outlet during the high flow season, and 18%, 39%, and 43%, respectively, in samples obtained during the low flow season.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call