Abstract

Organic compound tracers including n-alkanes, triterpane, sterane, polycyclic aromatic hydrocarbons (PAHs) and dicarboxylic acids of airborne particulate matter (PM10) were characterized for samples collected at five sites from July 2010 to March 2011 using GC/MS. Spatial and temporal variations of these organic tracers in PM10 were studied, and their sources were then identified respectively. Average daily concentrations of PM10 varied in different seasons with the trend of PM10 in winter (0.133 mg/m(3)) > autumn (0.120 mg/m(3)) > spring (0.103 mg/m(3)) > summer (0.098 mg/m(3)). Daily concentrations of n-alkanes (C11-C36) ranged from 12.11 to 163.58 ng/m(3) with a mean of 61.99 ng/m(3). The C max and CPI index of n-alkanes indicated that vehicle emissions were the major source in winter, while the contributions of high plant wax emissions became significant in other seasons. It was discovered that the main sources of triterpenoid and steranes were gasoline and diesel engine emissions. Concentrations of ∑15PAHs in PM10 also varied (12.25-58.56 ng/m(3)) in different seasons, and chrysene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi) perylene and fluoranthene were the dominant components. In the four seasons, the concentration of ∑15PAHs was relatively higher at the northern site because of traffic congestion. The main source of airborne PAHs was traffic emissions and coal combustion. Average daily concentrations of dicarboxylic acids (C4-C10) in PM10 ranged from 12.11 to 163.58 ng/m(3), of which azeleic acid was the major compound (0.49-52.04 ng/m(3), average 14.93 ng/m(3)), followed by succinic acid (0.56-19.08 ng/m(3), average 6.84 ng/m(3)). The ratio of C6/C9 showed that the major source in winter was biological, while the contributions of emissions from anthropogenic activities were much higher in summer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.