Abstract

Electric vehicle (EV) charging demand is an essential input of charging facility location models. However, charging demand may vary across seasons. In response, this paper first provided insights into the seasonal variance in charging demand using a unique GPS trajectory dataset which contained travel, parking, and charging information of 2,658 private EVs in Beijing. The dataset was collected in January, April, July, and October 2018, which were representative months in winter, spring, summer, and autumn, respectively. Through statistical and spatiotemporal analyses, we found that in winter, EVs got recharged when their state of charge (SOC) was lower: the average SOCs on working days were 51.96%, 48.39%, 50.86%, and 43.50%, in spring, summer, autumn, and winter, respectively. Furthermore, the central urban areas tended to have a higher charging demand in winter. To further explore how the seasonal variance in charging demand may influence infrastructure deployment, we used the classical p-median model to deploy charging facilities with the charging demands in the four seasons, considering the modifiable areal unit problem (MAUP). The results suggested that the seasonal variance did influence the layout of charging facilities under different spatial analysis units (SAUs). The deployment of charging facilities in the central urban areas and outer suburbs tended to be more sensitive to seasonal variance in charging demand. The findings are expected to be useful for charging infrastructure planning in both the transport and power sectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call