Abstract
BackgroundMetals pollution is a worldwide environmental issue due to their persistence in the ecosystems, non-degradability, and bioaccumulation in marine biota. Pacific Oysters (Crassostrea gigas) are highly nutritious bivalve representing an important dietary constituent but may accumulate metals through feeding on suspended sediments from surrounding water, then represent a suitable tool for biomonitoring. Materials and methodsThe occurrence of trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Rb, Se, Sn, V, Zn) was investigated in Pacific Oysters (Cassostrea gigas) collected from Calich Lagoon in each season of 2019. Samples were homogenized and subjected to microwave acid digestion before being analyzed by inductively coupled plasma-mass spectrometer (ICP-MS). ResultsThe results showed a significant seasonal variation for temperature, dissolved oxygen, chlorophyll, and pH. Moreover, high significant seasonal variation in concentrations of Cd, Mn, Ni, and V was recorded. The highest values were found for Fe (128 mg kg⁻1 w.w.), and Al (112 mg kg⁻1 w.w.) in October, for Zn (113 mg kg⁻1 w.w.) in March and May. ConclusionsPacific Oysters were confirmed as suitable bioindicators of the health status of coastal lagoons; trace elements concentrations were highly affected by season of collection, and according to literature the highest values were recorded in autumn and summer. The EU legal limits for Cd and Pb were not exceeded, then the farmed oysters were safe to consumers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.