Abstract

The aim of this study is to elucidate the seasonal variation in the volume transport through the Tsushima-Korea Strait using the sea level difference across the Strait. The sea level difference associated with the baroclinic motion is estimated from the geostrophic current profile, which is calculated as its vertical integrated transport is zero, using the CTD data from 1988 to 1990. The sea level difference associated with the barotropic motion is estimated by subtracting the sea level difference associated with the baroclinic motion from the observed one. The range (maximum-minimum) of the seasonal variation in the volume transport is evaluated about 0.7 Sv on the average, using the sea level difference associated with the barotropic motion. It is one third of the seasonal variation in the volume transport which is estimated from observed sea level difference on the assumption that no baroclinic component exists. Such analyses also indicate that the volume transport was at a maximum in early winter and at a minimum in early spring from 1988 to 1990. The negative correlation is also found between the volume transport through the eastern channel and that through the western channel. Moreover, it is noticed that the seasonal variation in the surface current velocity in the Strait largely contains baroclinic motions which are locally caused in the Tsushima-Korea Strait.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call