Abstract

AbstractIn the eastern Gulf of Guinea (GG), freshwater originated from rivers discharges into the ocean and high precipitation rate are key contributors to the upper ocean vertical density stratification, and play a key role in modulating local air‐sea interactions as well as biogeochemical cycle. Nevertheless, the dynamics of the GG freshwater plumes remain poorly documented because of the scarcity of historical, in situ observations and the lack of an ad hoc satellite‐based analysis in this region. Recent advances in remote sensing capabilities from the Soil Moisture and Ocean Salinity (SMOS) satellite mission offer unprecedented coverage and spatiotemporal resolution of Sea Surface Salinity (SSS) in the GG. Using SMOS SSS and available in situ measurements, the seasonal variability of freshwater plumes and associated physical mechanisms controlling their seasonal cycle are presented and analyzed. Freshwater plumes in the GG follow two dynamical regimes. They present maximum offshore extension during boreal winter and exhibit minimum signature during summer. In the northeastern GG, SSS variability is mainly explained by high precipitation rate and Niger River runoff during winter, while during late summer, SSS is mainly driven by horizontal advection. In contrast, southeast of GG, freshwater plumes are mainly supplied by Congo River runoff. From September to March, SSS variability is driven by zonal advection, with a major contribution from Ekman wind‐driven currents. During spring‐summer, the observed SSS increase is likely explained by entrainment and vertical mixing. SSS budget and freshwater advection processes are discussed in the context of the shallow stratification induced by freshwater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.