Abstract
AbstractSeasonal variability in pathways of warm-water masses toward the Kangerdlugssuaq Fjord (KF)–Glacier (KG) system, southeast Greenland, is investigated by backtracking Lagrangian particles seeded at the fjord mouth in a high-resolution regional ocean model simulation in the ice-free and the ice-covered seasons. The waters at KF are a mixture of Atlantic-origin water advected from the Irminger Basin [Faxaflói (FF)], the deep waters from the Denmark Strait, and the waters from the Arctic Ocean, both represented by the Kögur section (KO). Below 200-m depth, the warm water is a mixture of FF and KO water masses and is warmer in winter than in summer. The authors find that seasonal differences in pathways double the fraction of FF particles in winter, causing the seasonal warming and salinification. Seasonal temperature variations at the upstream sections (FF and KO) have a negligible impact on temperature variations near the fjord. Successful monitoring of heat flux to the fjord therefore needs to take place close to the fjord and cannot be inferred from upstream conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.