Abstract

AbstractRecent studies indicate that the dynamics of fast-flowing, marine-terminating outlet glaciers of the Greenland ice sheet may be sensitive to climate and ocean forcing on sub-annual timescales. Observations of seasonal behavior of these glaciers at such high temporal resolution, however, are currently few. Here we present observations of front position, flow speed, near-surface air temperature and ocean conditions for six large marine-terminating glaciers in the Uummannaq region of West Greenland, to investigate controls on short-term glacier dynamics. As proposed by other studies, we find that seasonal front advance and retreat correlates with the formation and disappearance of an ice melange. Our data suggest that high sea-surface temperature, anomalously low sea-ice concentration and reduced melange formation in early 2003 have triggered multi-year retreat of several glaciers in the study area, which is consistent with other regions in Greenland. Of the stable glaciers, only Rink Isbræ exhibits a seasonal speed variation that correlates with variations in front position, with the others undergoing mid-summer deceleration that indicates the effects of subglacial meltwater discharge and drainage system evolution. Drainage of supraglacial lakes and water-filled crevasses results in substantial decreases in speed (40–60%) on fast-flowing glaciers. Our results demonstrate that attempts to model ice-sheet evolution must take into account short-timescale flow dynamics resulting from drainage events and oceanographic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call