Abstract

Few studies have examined how foraging niche shift of a predator over time cascade down to local prey communities. Here we examine patterns of temporal foraging niche shifts of a generalist predator (yellow catfish, Pelteobagrus fulvidraco) and the abundance of prey communities in a subtropical lake. We predicted that the nature of these interactions would have implications for patterns in diet shifts and growth of the predator. Our results show significant decreases in planktivory and benthivory from late spring to summer and autumn, whereas piscivory increased significantly from mid-summer until late autumn and also increased steadily with predator body length. The temporal dynamics in predator/prey ratios indicate that the predation pressure on zooplankton and zoobenthos decreased when the predation pressure on the prey fish and shrimps was high. Yellow catfish adjusted their foraging strategies to temporal changes in food availability, which is in agreement with optimal foraging theory. Meanwhile the decrease in planktivory and benthivory of yellow catfish enabled primary consumers, such as zooplankton and benthic invertebrates, to develop under low grazing pressure via trophic cascading effects in the local food web. Thus, yellow catfish shifts its foraging niche to intermediate consumers in the food web to benefit the energetic demand on growth and reproduction during summer, which in turn indirectly facilitate the primary consumers. In complex food webs, trophic interactions are usually expected to reduce the strength and penetrance of trophic cascades. However, our study demonstrates strong associations between foraging niche of piscivorous fish and abundance of prey. This relationship appeared to be an important factor in producing top-down effects on both benthic and planktonic food webs.

Highlights

  • Foraging behavior is strongly modulated by spatio-temporal variations in food availability [1,2], and coherence between predators and their prey is common in a variety of ecosystems, because predators must continuously track changing prey patterns and respond to complex heterogeneities in space and time [3,4]

  • Foraging niche shifts play an important role in shaping the feeding strategies of predators in all habitats

  • Fishes show flexible feeding habits and sometimes undergo diet shifts that deviate from their presumed food sources [17], e.g., shifts between the benthic and planktonic food webs [18,19]

Read more

Summary

Introduction

Foraging behavior is strongly modulated by spatio-temporal variations in food availability [1,2], and coherence between predators and their prey is common in a variety of ecosystems, because predators must continuously track changing prey patterns and respond to complex heterogeneities in space and time [3,4]. Given that resource utilization abilities are generally related to body size, many species will undergo extensive ontogenetic shifts in foraging strategies, which can be viewed as navigating a landscape of foraging niches [5]. Understanding such patterns will help us to predict the trajectory a species will take at the various life history stages and the ecological consequences that this trajectory may have. Given that utilization of prey are generally related to both body size and resource availability, predators will undergo extensive foraging niche shifts in the natural environment, which in turn will shape the structure of communities in which these interactions are imbedded [10]. Empirical studies are still needed to understand predator-prey relationships in order to improve our understanding of natural communities, and to promote correct decision-making for the management of exploited populations and the conservation of species [1,3]

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.