Abstract

Summary1. The degree to which communities are variable may be affected by the ecological conditions to which they are exposed and can affect their propensity to form alternative states. We examined the influence of two common ecological factors, predation and seasonal successional stage, on the variability in community composition of herbivorous pond plankton. In a highly replicated, two factor, mesocosm experiment we determined whether beta diversity was affected by seasonal successional stage of the community (two levels), by fish predation (presence/absence) or by their interaction.2. Several significant changes were found in the composition of the rotifer, cladoceran and copepod assemblages. Most cladoceran abundances showed sharp declines in the presence of fish, while some rotifers, as well as their assemblage species richness, responded favourably to fish. The copepod assemblage was composed of omnivorous and carnivorous species, which added invertebrate predation to the experiment and which intensified as the season progressed. Copepods showed responses to fish predation that depended on seasonal successional stage of the initial community, because of changes in their stage structure and edibility as they grew from nauplii to adults.3. Community variability was consistently high at the end of each month‐long experimental period for both cladoceran and rotifer assemblages, except under two conditions. In the early season treatments, the rotifer assemblages were more consistent (lower beta diversity) in the presence of fish. This was attributed to high population growth rates for rotifers under these ecological conditions because of reduced copepod predation on them through a trophic cascade from fish. Low community variability was also observed in the late season for rotifers when fish were excluded and, as a result, they were exposed to high invertebrate predation from cyclopoid copepods.4. Results from the early season support theoretical predictions that when community size increases, variability in composition should decline because of an increase in competitive processes over stochastic ones. Late season results suggest that a second mechanism, specialist predation, can also reduce prey community variability. Our study demonstrates that plankton communities may be more predictable under certain trophic web configurations and challenges ecologists to find ways to incorporate such inherent variability into experiments and community theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call