Abstract
AbstractWe examined seasonal spatial distribution and diel movements of juvenile lake sturgeon Acipenser fulvescens in Muskegon Lake, Michigan (a protected, drowned river mouth lake that links the Muskegon River to Lake Michigan). We surgically implanted ultrasonic tags in 20 juveniles (age 1–7) captured in gill nets to track their locations during August–December 2008/2009 and September 2010–October 2011. Most juveniles were observed ≤1.5 km from the mouth of the Muskegon River in Muskegon Lake at a mean depth of 7.5 m (SE = 1.3 m) during summer. In fall, juveniles moved away from the river mouth to the deepest part of Muskegon Lake and were observed at a mean depth of 15.8 m (SE = 1.3 m) during winter. The shift in spatial distribution coincided with fall turnover (i.e., loss of thermal stratification) and with changes in dissolved oxygen (DO) concentrations in the hypolimnion. During summer, DO concentrations in the hypolimnion were typically <4 mg·l−1 in the deepest part of Muskegon Lake and DO concentrations at locations of tagged lake sturgeon were >7 mg·l−1 in 94% of instances. Tracking in 2009 revealed no significant change in depth distribution or movement over the diel cycle. We only observed two tagged juveniles immigrating to Lake Michigan, suggesting that juveniles use Muskegon Lake for multiple years. Our results suggest that: (i) Muskegon Lake serves as an important nursery habitat for juvenile lake sturgeon that hatched in the Muskegon River before they enter Lake Michigan and (ii) seasonal changes in DO concentration in the hypolimnion likely affect the spatial distribution of juveniles in Muskegon Lake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.