Abstract

The influence of the Atlantic Multidecadal Oscillation (AMO) on Asian monsoonal climate in all four seasons is investigated by comprehensive observational analyses and ensemble experiments with atmospheric general circulation models (AGCMs). Three AGCMs are forced by prescribed climatological seasonal cycle of sea surface temperature (SST) or with additional SST anomalies representing the warmth phase of the AMO. The results in both the observations and the models consistently suggest that the warm AMO phase gives rise to elevated air temperatures in East Asia and northern India but decreased air temperatures in much of central‐southern India in all four seasons. This positive AMO anomaly also causes more rainfall in central and southern India in every season, particularly in summer and fall. In contrast, the sign of AMO influences on East Asian rainfall is season‐dependent: in southeastern China, it induces increased rainfall in summer but suppressed rainfall in autumn. It is suggested that these AMO influences are realized by warming Eurasian middle and upper troposphere in all four seasons, resulting in weakened Asian winter monsoons but enhanced summer monsoons. Furthermore, the formation of the troposphere heating anomaly may be related to the wave guidance mechanism associated with the Asian upper jet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.