Abstract

A 10-year run was made with a reduced resolution (T40) version of NMC's medium range forecast model. The 12 monthly mean surface pressure fields averaged over 10 years are used to study the climatological seasonal redistribution of mass associated with the annual cycle in heating in the model. The vertically integrated divergent mass flux required to account for the surface pressure changes is presented in 2D vector form. The primary outcome is a picture of mass flowing between land and sea on planetary scales. The divergent mass fluxes are small in the Southern Hemisphere and tropics but larger in the midlatitudes of the Northern Hemisphere, although, when expressed as a velocity, nowhere larger than a few millimeters per second. Although derived from a model, the results are interesting because we have described aspects of the global monsoon system that are very difficult to determine from observations. Two additional features are discussed, one physical, the other due to postprocessing. First, we show that the local imbalance between the mass of precipitation and evaporation implies a divergent water mass flux that is large in the aforementioned context (i.e., cm s−1). Omission of surface pressure tendencies due to the imbalance of evaporation and precipitation (order 10–30 mb per month) may therefore be a serious obstacle in the correct simulation of the annual cycle. Within the context of the model world it is also shown that the common conversion from surface to sea level pressure creates very large errors in the mass budget over land. In some areas the annual cycles of surface and sea level pressure are 180° out of phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call