Abstract

Nitrogen (N) fertiliser inputs represent one of the largest variable costs in dryland cropping systems, and a key determinant of water-limited yield. Despite extensive research into microbial N losses via intermediate denitrification products such as N2O, limited research exists on total N losses, and the effect of increasing soil N surplus has on fertiliser use-efficiency is not clear. In this study, the fate of banded urea fertiliser N across crop uptake, soil residual N and N losses was determined using the 15N recovery technique over nine trials with four N rates (0, plus low, medium and high industry rates) across N responsive and non-N responsive sites over 3 years in dryland sorghum (Sorghum bicolor). On average, crop uptake efficiency ranged from 50% at the low and medium N rate (80 kg N ha−1) to < 38% at the highest N rate, and was as low as 5%. Nitrogen losses averaged 26.5% across all rates and trials. At the medium N rate, losses exceeded 18% in all trials, despite relatively dry seasons, and in some trials exceeded 34%. Losses of N were driven by large cumulative rain events and high early-season rainfall. In dryland systems, the inability of crops to acquire banded N fertiliser can potentially leave fertiliser stranded in the topsoil, leaving it vulnerable to losses.Download : Download high-res image (141KB)Download : Download full-size image

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call