Abstract

The seasonal prediction of sea surface temperature (SST) and precipitation in the North Pacific based on the hindcast results of The First Institute of Oceanography Earth System Model (FIO-ESM) is assessed in this study. The Ensemble Adjusted Kalman Filter assimilation scheme is used to generate initial conditions, which are shown to be reliable by comparison with the observations. Based on this comparison, we analyze the FIO-ESM 6-month hindcast results starting from each month of 1993–2013. The model exhibits high SST prediction skills over most of the North Pacific for two seasons in advance. Furthermore, it remains skillful at long lead times for midlatitudes. The reliable prediction of SST can transfer fairly well to precipitation prediction via air-sea interactions. The average skill of the North Pacific variability (NPV) index from 1 to 6 months lead is as high as 0.72 (0.55) when El Nino-Southern Oscillation and NPV are in phase (out of phase) at initial conditions. The prediction skill of the NPV index of FIO-ESM is improved by 11.6% (23.6%) over the Climate Forecast System, Version 2. For seasonal dependence, the skill of FIO-ESM is higher than the skill of persistence prediction in the later period of prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call