Abstract
The phenotypic plasticity of the digestive system may determine the diversity of animal diets and, thus, their niche width. This study examines the effects of seasonal fluctuations in food quality and temperature on the gut morphology and the activity of sucrase, maltase, and aminopeptidase-N in the small intestinal brush-border membrane of male Mongolian gerbils (Meriones unguiculatus). Based on the adaptive modulation hypothesis and the principle of optimal gut function design, we hypothesize that the gut size, tissue-specific activity, and total hydrolytic capacity of intestinal digestive enzyme are upregulated in winter and downregulated in summer in response to diet shifts and energy demand in free-living Mongolian gerbils. Various seasonal modulation patterns in digestive enzyme activity in different regions of the small intestines were observed. The results show that male gerbils have the longest and heaviest small intestines in winter. This mechanism may be adapted to increase their food intake during winter. Male gerbils also exhibit the highest tissue-specific and total sucrase, maltase, and aminopeptidase-N activity in winter and in spring. Seasonal modulations are more distinct in the jejunum than in the duodenum and the ileum of the small intestines. The digestive phenotypic flexibility of male gerbils effectively corresponded with seasonal diet shifts and temperature fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.