Abstract

Under natural conditions the overlapping of multiple stressors may initiate coordinated ecophysiological responses in Mediterranean species. Seasonal plasticity may enable plants to better cope with adverse environmental conditions and/or resource variability. In this article, we study the seasonal responses of 12 woody species in two sites of differing water availability, in a Mediterranean-type climate. Plants were measured for water potential, photochemical efficiency, photosynthetic pigments and leaf proline content throughout the year. The results revealed that species presented different ecophysiological strategies, even when sharing the same area. In the xerophytic site, some species suffered severe water stress (−12 MPa and F v/F m lower than 0.3), while others exhibited optimal values of F v/F m and only moderate water stress. All the plants recovered after the first autumn rains. In the hygrophytic site, some sclerophyll species did not exhibit signs of water stress, but did suffer photoinhibition in clear winter days. A plasticity index was calculated to provide an integrated value of species plasticity. In summer, plasticity was higher in the xerophytic site, while in winter it was higher in the hygrophytic site. Ordination analysis of the physiological traits supports the traditional gradient of Mediterranean strategies from drought semideciduous to evergreen sclerophyll species, although spiny legume species formed an independent functional group. The functional responses of species clearly differ among plant communities according to the prevailing site stressors, but no unique pattern emerges. Species combine traits in broader strategies according to previous evolutionary story exhibiting a certain amount of trade among traits, each contributing to alleviate a part of the plant stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call