Abstract
We studied seasonal variability in photodegradation of dissolved organic carbon (DOC) resulting from artificial ultraviolet-A (UV-A) and UV-B irradiation. Water samples were taken approximately monthly from the surface layers of two oligotrophic lakes with contrasting humic content, situated in southern Sweden. Lake water was filter-sterilized (0.2 μm) and exposed to artificial UV radiation in quartz tubes. Potential DOC photodegradation, measured as a photoproduction of dissolved inorganic carbon (DIC) and oxalic, malonic, formic, and acetic acid in irradiated samples, was observed throughout the sampling period. In addition, exposure to UV radiation resulted in a decrease in DOC, absorbance, and humic substance fluorescence. The photoproduction of DIC and the low molecular weight (LMW) organic acids varied seasonally, being generally higher in winter and spring (December-May), while DOC appeared to become less photoreactive after the extensive exposure to solar radiation during summer. Production rates of both DIC and LMW organic acids were approximately eight times higher in the humic lake despite that the DOC concentration was only two times higher than in the clearwater lake. This is most probably due to the high input of allochthonous DOC and the resulting higher absorbance to DOC ratio in the humic system. Furthermore, the longer hydraulic residence time in the clearwater system could have resulted in an accumulation of residual DOC, recalcitrant to further photodegradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Fisheries and Aquatic Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.