Abstract

Survival of small birds in fluctuating environments is facilitated by seasonal metabolic and morphological flexibility. Chinese bulbuls Pycnonotus sinensis show winter increases in resting metabolic rate (RMR), nutritional organ masses, and liver and muscle cellular aerobic capacity relative to summer. In this study, we build on these findings from previous studies by measuring seasonal adjustments in body mass (Mb), RMR, nutritional and exercise organ masses, and several physiological, biochemical, and hormonal markers over the entire annual cycle in wild-trapped Chinese bulbuls from Wenzhou, China. Furthermore, we analyzed the relationships between variation in organ masses and cellular aerobic capacity and variation in RMR in individual birds. Mb and RMR were higher in spring (March-May) and winter (December-February) than in summer (June-August). The dry masses of several nutritional organs and mitochondrial protein content, state 4 respiration, and cytochrome c oxidase (COX) activity in liver and muscle were all heightened in winter relative to other seasons. In addition, dry masses of heart and pectoral muscle, but not nutritional organs, and biochemical markers of cellular aerobic capacity in liver and muscle were positively correlated with RMR. Plasma triiodothyronine (T3) concentration was higher in winter and spring than in summer and autumn, and it was positively correlated with RMR, mitochondrial protein content, state 4 respiration, and COX activity in liver and muscle. These results suggest that seasonal changes in nutritional and exercise organ masses and liver and muscle cellular aerobic capacity interact to promote seasonal metabolic flexibility in Chinese bulbuls. T3 appears to promote these seasonal thermoregulatory adjustments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call