Abstract
Seasonal patterns of microbially-mediated nitrogen cycling via the nitrification-denitrification pathway were compared between a natural and a restored salt marsh. Sedimentary denitrification rates, measured with a modification of the acetylene block technique, were approximately 44 times greater in the natural marsh relative to an adjacent transplanted marsh. Nitrification rates were similar at both sites. The difference in denitrification rates was attributed to oxygen inhibition at low tide and tidal flushing of porewater nutrients at high tide in the coarse sediments of the restored marsh. Denitrification was positively correlated with nitrification throughout the year in the natural marsh with a seasonal fall peak in denitrification corresponding to a maximum in porewater ammonia concentration. A weak correlation existed between the two processes in the restored marsh, where nitrification rates exceeded denitrification rates by a factor of 20. Transplanted marsh denitrification rates exhibited a spring peak, corresponding to elevated porewater ammonia concentrations. Our findings demonstrate functional differences in microbial nitrogen dynamics of a young (0–3 yr) restored marsh relative to a mature (>50 yr) salt-marsh system. *** DIRECT SUPPORT *** A01BY070 00008
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.