Abstract
We examined spatial and temporal dynamics of foliage respiration in canopies of dominant and suppressed Eucalyptus globulus trees to better understand processes regulating foliage respiration in a young fast-growing stand. Temperature response functions and seasonal measures of respiration (measured at a reference temperature of 15 °C, R₁₅) were studied for approximately 1 year to (i) examine controls on respiration as a function of canopy position, foliar nitrogen and non-structural carbohydrate concentrations and (ii) assess the capacity for thermal acclimation within E. globulus canopies. The short-term temperature response of respiration varied both with canopy position and seasonally. Area-based R(15) measurements declined with increasing canopy depth and were strongly related to foliar N concentrations, especially in upper-canopy positions. R₁₅ was negatively correlated with the average temperature of the preceding 14 days, a pattern consistent with thermal acclimation. In suppressed canopies, R₁₅ was higher than that at similar canopy heights in dominant trees. Similarly, foliar concentrations of non-structural carbohydrates were also relatively higher in suppressed canopies than dominant canopies, providing support for a substrate-based model of leaf respiration. Our data highlight the dynamic nature of foliar respiration within E. globulus canopies, which contrasts with the generally simplistic representation of respiration within most process-based models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.