Abstract

Abstract. High-quality atmospheric mercury (Hg) data are rare for South America, especially for its tropical region. As a consequence, mercury dynamics are still highly uncertain in this region. This is a significant deficiency, as South America appears to play a major role in the global budget of this toxic pollutant. To address this issue, we performed nearly 2 years (July 2014–February 2016) of continuous high-resolution total gaseous mercury (TGM) measurements at the Chacaltaya (CHC) mountain site in the Bolivian Andes, which is subject to a diverse mix of air masses coming predominantly from the Altiplano and the Amazon rainforest. For the first 11 months of measurements, we obtained a mean TGM concentration of 0.89±0.01 ng m−3, which is in good agreement with the sparse amount of data available from the continent. For the remaining 9 months, we obtained a significantly higher TGM concentration of 1.34±0.01 ng m−3, a difference which we tentatively attribute to the strong El Niño event of 2015–2016. Based on HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) back trajectories and clustering techniques, we show that lower mean TGM concentrations were linked to either westerly Altiplanic air masses or those originating from the lowlands to the southeast of CHC. Elevated TGM concentrations were related to northerly air masses of Amazonian or southerly air masses of Altiplanic origin, with the former possibly linked to artisanal and small-scale gold mining (ASGM), whereas the latter might be explained by volcanic activity. We observed a marked seasonal pattern, with low TGM concentrations in the dry season (austral winter), rising concentrations during the biomass burning (BB) season, and the highest concentrations at the beginning of the wet season (austral summer). With the help of simultaneously sampled equivalent black carbon (eBC) and carbon monoxide (CO) data, we use the clearly BB-influenced signal during the BB season (August to October) to derive a mean TGM / CO emission ratio of (2.3±0.6)×10-7 ppbvTGM ppbvCO-1, which could be used to constrain South American BB emissions. Through the link with CO2 measured in situ and remotely sensed solar-induced fluorescence (SIF) as proxies for vegetation activity, we detect signs of a vegetation sink effect in Amazonian air masses and derive a “best guess” TGM / CO2 uptake ratio of 0.058 ±0.017 (ng m−3)TGM ppmCO2-1. Finally, significantly higher Hg concentrations in western Altiplanic air masses during the wet season compared with the dry season point towards the modulation of atmospheric Hg by the eastern Pacific Ocean.

Highlights

  • Mercury (Hg) is a global contaminant that accumulates in the marine food chain and, threatens wildlife and populations relying on halieutic resources

  • We considered this sort of inherent weighting to be desirable, as it gives greater weight to total gaseous mercury (TGM) concentrations assigned to air masses passing an extended period of time over the grid cell in question

  • Our measurements of TGM at the CHC mountain site fill an important gap in observations for South America and allow us to make justified assumptions about the dynamics of atmospheric mercury on the continent

Read more

Summary

Introduction

Mercury (Hg) is a global contaminant that accumulates in the marine food chain and, threatens wildlife and populations relying on halieutic resources. As reported in the 2018 Global Mercury Assessment, anthropogenic sources of Hg mainly comprise artisanal and small-scale gold mining (ASGM; accounting for about 38 % of the total emissions in 2015), stationary fossil fuel and biomass combustion (24 %), metal and cement production (combined 26 %), and garbage incineration (7 %). Over the last 15 years, TGM and GEM have been monitored worldwide by regional, national, and continental initiatives alongside networks such as GMOS (Global Mercury Observation System), AMNet (Atmospheric Mercury Network), MDN (Mercury Deposition Network), and APMMN (Asia-Pacific Mercury Monitoring Network). These measurements provide a tool to rapidly follow changes and patterns in sources and understand regional processes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call