Abstract

Abstract For the tropical country of Sri Lanka, subseasonal variability in precipitation is both ecologically and societally relevant, influencing agricultural yields, natural hazard risk, energy production, and disease incidence. The primary driver of this subseasonal precipitation variability is the Madden–Julian oscillation (MJO). Here we investigate this influence on Sri Lankan precipitation across seasons, describing MJO-associated precipitation patterns and exploring the potential for MJO-informed subseasonal forecasts. We do so using 40-yr satellite-derived records of precipitation with high spatial resolution (from CHIRPS v2.0) and related meteorological and atmospheric fields (from ERA5 and MERRA-2). We find a direct MJO influence on precipitation corresponding to propagation of the MJO’s convectively active region and suppressed region near Sri Lanka, with the strength and spatial patterns of this influence differing across seasons. There are particularly strong impacts in the second intermonsoon (SIM; October–November) and southwest monsoon (SWM; May–September) seasons. During SIM the impacts are island-wide, but strongest in the northeast. During the SWM the absolute impacts are localized to the southwest, but the relative impacts (i.e., relative to precipitation climatology) are fairly uniform across the island. Moreover, we find significant associations between MJO phase and Sri Lankan precipitation at time scales of up to several weeks. Notably, these associations are stronger when using the OLR-based MJO index (OMI) rather than the more commonly used real-time multivariate MJO index (RMM). While the MJO associations we describe here arise from a highly simplified forecasting scheme, they provide a foundation and impetus for developing a more complete, MJO-informed precipitation forecast method. Significance Statement Rainfall variability at the subseasonal (weeks–months) time scale is critical to societal well-being, given its fundamental importance for agriculture, flood risk, hydropower generation, and disease incidence. Our work describes how such rainfall variability in Sri Lanka is impacted by the Madden–Julian oscillation, in which a region of enhanced rainfall and cloudiness, paired with a region of decreased rainfall and cloudiness, circles the globe every 30–60 days. Our results suggest that its influence on Sri Lankan rainfall may be strong enough that incorporating knowledge of the Madden–Julian oscillation into forecasts can improve the accuracy of rainfall prediction for Sri Lanka. Future work should develop a more comprehensive forecast method to assess viability in real-world forecasting scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call