Abstract

For the period 1995–2000, the Nepal seismic network recorded 37 ± 8% fewer earthquakes in the summer than in the winter; for local magnitudes ML > 2 to ML > 4 the percentage increases from 31% to 63% respectively. We show the probability of observing this by chance is less than 1%. We find that most surface loading phenomena are either too small, or have the wrong polarity to enhance winter seismicity. We consider enhanced Coulomb failure caused by a pore‐pressure increase at seismogenic depths as a possible mechanism. For this to enhance winter seismicity, however, we find that fluid diffusion following surface hydraulic loading would need to be associated with a six‐month phase lag, which we consider to be possible, though unlikely. We favor instead the suppression of summer seismicity caused by stress‐loading accompanying monsoon rains in the Ganges and northern India, a mechanism that is discussed in a companion article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.