Abstract

We investigated the regulation of free radical metabolism in Helix aspersa snails during a cycle of 20-day estivation and 24-h arousal in summer in comparison with estivation/arousal in winter-snails. In winter-snails (J. Exp. Biol. 206, 675–685, 2003), we had already observed an increase in the selenium-dependent glutathione-peroxidase (Se-GPX) activity in foot muscle and hepatopancreas and in the contents of hepatopancreas GSH-equivalents (GSH-eq=GSH+2 GSSG) during estivation compared with 24-h aroused snails. Summer-estivation prompted a 3.6-fold increase in Se-GPX activity in hepatopancreas, though not in foot muscle. Total-superoxide dismutase and catalase activities in hepatopancreas decreased (by 30–40%) during summer-estivation; however, no changes occurred in the activities of glutathione reductase, glutathione S-transferase and glucose-6-phosphate dehydrogenase in the two organs. GSH-eq levels were increased (by 54%) in foot muscle during estivation, but were unchanged in hepatopancreas. In contrast with winter-snails, oxidative stress markers (lipid peroxidation, carbonyl protein, and the GSSG/GSH-eq ratio) were unaltered during estivation/arousal in summer. These results demonstrate that seasonality modulates not only the absolute activities/levels of antioxidants (enzymes and GSH-eq) in H. aspersa, but also the regulatory process that controls the snail's antioxidant capacity during estivation/arousal. These results suggest that H. aspersa has an “internal clock” controlling the regulation of free radical metabolism in the different seasons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call