Abstract

Continental precipitation returns to the atmosphere and the ocean with a delay that is critical in regulating seasonal water supply to ecosystems and societies. We quantify the magnitude and spatial patterns of this seasonal hydrologic buffer, its climatic and terrain drivers, and its apparent benefits to ecosystems using observed precipitation, climate reanalysis evaporation, GRACE seasonal water storage change, and MODIS vegetation index for a 1°×1° global grid. We found that (1) seasonal hydrologic buffering is widespread and averages 241mm.yr−1 on land (a quarter of continental precipitation); it supports evaporation 3-to-9 months of the year over all regions except the per-humid tropics and energy limited high latitudes, (2) the seasonal climatic water imbalance, with surplus in some months and deficit in others, drives hydrologic buffering in lower latitudes, while it is controlled by snow/ice storage in high latitudes, (3) the main terrain effect at our scale of analysis is grid-to-grid water transfer via large rivers providing lateral subsidy to lowland basins, and (4) buffering is manifested in global patterns of plant water use, as shown by high evaporation levels in water deficit conditions, particularly under tropical monsoonal climate. Our results highlight the paramount role of seasonal land water storage and redistribution in supporting ecosystem productivity, and provide a reference to understanding likely impacts of global change on the water cycle and ecosystem dynamics in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.