Abstract
Abstract Context The Gunnison sage-grouse (Centrocercus minimus) has experienced range-wide declines and has been listed as Threatened by the USA Fish and Wildlife Service to receive protections under the USA Endangered Species Act. A draft Recovery Plan was recently completed. No seasonal habitat models have been developed for the small isolated populations. Aims To develop a habitat suitability model that was collaboratively developed between modellers and conservation practitioners to predict the probability of use by Gunnison sage-grouse during the breeding and summer seasons in designated occupied critical habitat, and extrapolate to adjacent designated unoccupied critical habitat. Methods We captured, marked and tracked Gunnison sage-grouse in nine different studies spanning 25 years. We used a suite of biotic, abiotic and vegetation local-level and population-scale covariates in a use-available resource selection function to develop models that predict the probability of use by Gunnison sage-grouse. Key results We used 9140 Gunnison sage-grouse locations from 406 individual birds to develop nine resource selection models for occupied habitat and extrapolated model predictions to adjacent unoccupied critical habitat in five small isolated Gunnison sage-grouse populations. A majority of our models validated well. Conclusions We report the first two-season resource use-based habitat suitability models for five of six small isolated Gunnison sage-grouse populations. Because of the unique habitat use by Gunnison sage-grouse in each population, we recommend that resource managers strategically target management actions in individual populations and avoid ‘one-size-fits-all’ habitat management prescriptions. Implications Our models will assist managers in the identification of seasonal habitats within populations to target management actions for Gunnison sage-grouse recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.