Abstract

Tidally driven flows, waves, and suspended sediment concentrations were monitored seasonally within a Zostera marina seagrass (eelgrass) meadow located in a shallow (1–2 m depth) coastal bay. Eelgrass meadows were found to reduce velocities approximately 60 % in the summer and 40 % in the winter compared to an adjacent unvegetated site. Additionally, the seagrass meadow served to dampen wave heights for all seasons except during winter when seagrass meadow development was at a minimum. Although wave heights were attenuated across the meadow, orbital motions caused by waves were able to effectively penetrate through the canopy, inducing wave-enhanced bottom shear stress (τb). Within the seagrass meadow, τb was greater than the critical stress threshold (=0.04 Pa) necessary to induce sediment suspension 80–85 % of the sampling period in the winter and spring, but only 55 % of the time in the summer. At the unvegetated site, τb was above the critical threshold greater than 90 % of the time across all seasons. During low seagrass coverage in the winter, near-bed turbulence levels were enhanced, likely caused by stem–wake interaction with the sparse canopy. Reduction in τb within the seagrass meadow during the summer correlated to a 60 % reduction in suspended sediment concentrations but in winter, suspended sediment was enhanced compared to the unvegetated site. With minimal seagrass coverage, τb and wave statistics were similar to unvegetated regions; however, during high seagrass coverage, sediment stabilization increased light availability for photosynthesis and created a positive feedback for seagrass growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.