Abstract
Extracellular enzymes (EE) play a vital role in soil nutrient cycling and thus affect terrestrial ecosystem functioning. Yet the drivers that regulate microbial activity, and therefore EE activity, remain under debate. In this study we investigate the temporal variation of soil EE in a tropical terra-firme forest. We found that EE activity peaked during the drier season in association with increased leaf litterfall, which was also reflected in negative relationships between EE activities and precipitation. Soil nutrients were weakly related to EE activities, although extractable N was related to EE activities in the top 5 cm of the soil. These results suggest that soil EE activity is synchronized with precipitation-driven substrate inputs and depends on the availability of N. Our results further indicate high investments in P acquisition, with a higher microbial N demand in the month before the onset of the drier season, shifting to higher P demand towards the end of the drier season. These seasonal fluctuations in the potential acquisition of essential resources imply dynamic shifts in microbial activity in coordination with climate seasonality and resource limitation of central-eastern Amazon forests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.