Abstract
AbstractWater stored in and released from supraglacial lakes is an important factor when considering the seasonal and long-term evolution of the Greenland ice sheet. Here we use a radiative transfer model to estimate changes in the depth and volume of a supraglacial lake on the surface of Jakobshavn Isbræ, West Greenland, between 2002 and 2005. When compared to estimates of the lake depth determined from airborne lidar observations, we estimate that the root-mean-square departure of the modelled lake depths was 0.3 m during cloud-free conditions. The maximum lake area, depth and volume were 3.4 km2, 9.6 ±1.0 m and (18.6±3.7)×106 m3, respectively. When sequenced according to the number of positive degree-days (PDDs) accumulated prior to each image, we observe that the lake volume evolves in three distinct phases. At the start of the melting season, the rate of filling is slow; after approximately 80 PDDs the rate of filling increases by a factor ∽3, and after approximately 125 PDDs the lake drains rapidly. We estimate that the lake drains at a minimum rate of (2.66±0.53)×106 m3 d–1 over a 6 day period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.