Abstract

To investigate the main modes of interannual variation of chlorophyll-a (Chla) with seasonal evolution and its variation cycle in the North Indian Ocean based on satellite-derived products during 1998–2016, a season-reliant empirical orthogonal function (S-EOF) analysis and power spectrum analysis based on Fourier transform are applied in the study. The first three dominate modes reveal distinct Chla variability, as the S-EOF1 features by one dipole pattern have a negative anomaly in the central western Indian Ocean and a positive anomaly off the Java–Sumatra coasts, which is mainly synchronously associated with the climate indices of the positive Indian Ocean dipole (IOD) and eastern Pacific El Nino (EP-El Niño). The S-EOF2 indicates a tripolar structure with positive anomalies located in the central Indian Ocean surrounded by two negative anomalies, which is one year behind a positive IOD and EP-El Niño event. The S-EOF3 exhibits a different dipole distribution, with a positive anomaly in the central west and a negative anomaly in the southeast, synchronized or lagging behind the central Pacific El Nino (CP-El Niño). Moreover, regarding the correlation between the main modes of interannual variation and the IOD and El Nino events, the dynamic parameters (such as SST, SLA, rain, and wind) of the tropical Indo-Pacific Ocean are discussed using time-delay correlation and linear regression analysis to explain the key factors and possible influencing mechanism of the joint seasonal and interannual variations of Chla in the northern Indian Ocean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call