Abstract
AbstractSeasonal evolution of rainband over East China is evident and shows remarkable year-to-year variations. The present study identified two dominant interannual modes of the seasonal evolution of rainband over East China from 1981 to 2018: (1) the sudden change pattern, in which the anomalous rainfall changes abruptly from boreal spring to summer, especially over South China; and (2) the northward migration pattern, which shows a gradual poleward migration of the anomalous rainband over East China with the East Asian summer monsoon (EASM). Both of them are regulated by the sea surface temperature anomalies (SSTAs) in the Northern Hemisphere from spring to summer. In the sudden change pattern, the SSTAs in the Pacific modulate spring rainfall over South China via the ENSO–EASM teleconnection. By contrast, the North Atlantic SSTAs change the mid-latitude wave train and modify summer rainfall over South and North China, in conjunction with the anomalous tropical circulation due to the Indian SSTAs. In the northward migration pattern, the North Pacific SSTAs alter spring rainfall over South China by varying the low-level western North Pacific subtropical high and the zonal land–sea thermal contrast over East Asia. Afterward, the ENSO-like SSTAs induce a Pacific–Japan teleconnection and shift the anomalous rainband northward to the Yangtze-Huai River and North China in summer. The seasonal switch of the SSTAs regulating these two modes is physically linked from boreal spring to summer. This mechanism provides potential seasonal predictability of the seasonal evolution of the anomalous rainband over East China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.