Abstract

Commercial micropropagation of wetland plants used for habitat restoration provides an alternative to field collection and facilitates production of difficult-to-propagate species and possibly selection of ecotypes that are physiologically adapted to specific habitat conditions. Knowledge of the degree of ecotypic variation within and between wetland populations is very limited. The feasibility of screening ecotypic differences in growth of micropropagated wetland plants, following acclimatization, was examined using Sagittaria latifolia Willd. (Duck-potato), a highly variable rhizomatous herbaceous wetland species that is widely distributed in southeastern Canada and the eastern United States. Plants were obtained from populations in Rhode Island, North Carolina, South Carolina, and Florida. Stage I cultures of each Sagittaria latifolia ecotype were established from surface-sterilized rhizome shoot-tips cultured in a liquid basal medium (BM) consisting of half-strength Murashige and Skoog mineral salts, 0.56 mM myo-inositol and 1.2 μM thiamine supplemented with 87.6 mM sucrose. Stage I cultures were indexed for cultivable bacteria prior to clonal multiplication of each ecotype by rhizome production on agar-solidified BM supplemented with 1.1 μM benzyladenine (BA). At 4-week intervals for 24 months, Stage II microcuttings of each ecotype were acclimatized and rooted in soilless growing medium under intermittent mist for 10 days. Plantlets were transferred to a shadehouse (50% sunlight reduction) and maintained under prevailing environmental conditions. Plant height, leaf length and number, rhizome number, corm number and weight, and flowering were determined 6 weeks post-transplant. Significant seasonal differences in leaf growth, rhizome production, corm formation and flowering were observed between ecotypes. During the growing season, induction of corm formation occurred progressively earlier in the more northern ecotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.