Abstract

Occurrences of odor compounds in drinking water reservoirs are considered as a nuisance by the water industry. Through the high-frequency monitoring of Tianmuhu Reservoir, a drinking water source for a city with a population of 700,000, we found that odor compounds seasonal dynamics were significantly related to phytoplankton succession, which was controlled by hydrometeorological process. 2-Methylisoborneol (2-MIB) was significantly related to Aphanizomenon sp. (r = 0.51). When the surface water temperature exceeded 12 ℃, 2-MIB concentration may exceed the odor threshold concentration. With the proliferation of Aphanizomenon sp. in spring, 2-MIB concentration reached 87.22 ng/L. After late spring heavy rain, 2-MIB concentration sharply decreased to 3.19 ng/L. As the temperature increased at the end of the rainy season, Aphanizomenon sp. biomass increased to 2.09 mg/L, and 2-MIB concentration increased to 40.16 ng/L. These results showed that the concentration of odor compounds in shallow layer varied greatly because odor compounds mainly originated from phytoplankton and were susceptible to short-term hydrometeorological processes. However, the concentrations of odor compounds in deep layer were relatively insensitive to short-term weather processes. This study will improve the understanding of seasonal changes in odor compounds at different depths, and provide useful information for reservoir managers to prevent odor problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call