Abstract

Microbial community diversity significantly varies with seasonality. However, little is known about seasonal variation of microbial community functions in lake sediments and their associated environmental influences. In this study, metagenomic sequencing of sediments collected from winter, summer, and autumn from Caohai Lake, Guizhou Plateau, were used to evaluate the composition and function of sediment microbial communities, the potential interactions of functional genes, key genes associated with seasons, and community assembly mechanisms. The average concentrations of nitrogen (TN) and phosphorus (TP) in lake sediments were higher, which were 6.136 and 0.501 g/kg, respectively. TN and organic matter (OM) were the primary factors associated with sediment community composition and functional profiles. The diversity and structure of the microbial communities varied with seasons, and Proteobacteria relative abundances were significantly lower in summer than in other seasons (58.43–44.12 %). Seasons were also associated with the relative abundances of functional genes, and in particular korA, metF, narC, nrfA, pstC/S, and soxB genes. Network complexity was highest in the summer and key genes in the network also varied across seasons. Neutral community model analysis revealed that the assembly mechanisms related to carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycle-related genes were primarily associated with random processes. In summary, diverse functional genes were identified in lake sediments and exhibited evidence for synergistic interactions (Positive proportion: 74.91–99.82 %), while seasonal factors influenced their distribution. The results of this study provide new insights into seasonal impacts on microbial-driven biogeochemical cycling in shallow lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.