Abstract

The irrational use of antibiotics has given rise to the proliferation of antibiotic resistance genes (ARGs) in coastal bays. There were few reports on the seasonal distribution of ARGs under the influence of land-ocean interaction in coastal bay. This work studied the seasonal and spatial proliferation of ARGs under the influences of land-ocean interaction in the Sishili Bay. Ten ARGs including tetB, tetG, tetX, sul1, sul2, qnrA, qnrB, qnrS, ermF, ermT and class 1 integron-integrase gene (intI1) were detected and quantified. The relative abundances of intI1 and most of ARGs were in orders of magnitude of 1×10-7-2 copies/16S rRNA copies. The abundances of total ARGs in autumn and summer were much higher than those in the other seasons. Estuary, port and aquaculture farms were important reservoirs of ARGs in the bay. The nutrient levels in coastal water were positively associated with most of the ARGs and intI1, indicating that the water quality was an important driver of ARGs and their transmission. The land-based discharge and seawater stratification were proved to be the dominant driving factors for the seasonal distribution of ARGs in the coastal bay. The land-based discharge and seawater stratification were enhanced from spring to summer, which led to the sharp increase in ARGs in the surface water of the bay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call