Abstract

Invasive sea lamprey (Petromyzon marinus) are controlled in the Great Lakes with 4-nitro-3-(trifluoromethyl)phenol (commonly 3-trifluoromethyl-4-nitrophenol or TFM). The proper amount of TFM must be applied during treatments to effectively kill larval sea lamprey while minimizing impacts to non-target species. In this study, bioassay tests were conducted in May, July, and September in a portable test trailer at six larval sea lamprey infested rivers in Michigan to determine potential seasonal changes in sensitivity of larval sea lamprey to TFM. Larvae greater than 60 mm were collected from each stream and exposed for 12 h in TFM-treated stream water using two independent continuous-flow diluter systems. A suite of water chemistries and larval physiological parameters were collected during the tests and modeled as potential predictors of seasonal changes in the sensitivity of larval sea lamprey to TFM. The observed minimum lethal concentrations to larval sea lamprey were 0–40% lower (May), 8% lower–59% higher (July), and 49–117% higher (September) than sea lamprey control personnel treatment prediction charts. Water temperature, liver glycogen content, and time of year were strongly associated with seasonal differences in TFM sensitivity, offering sea lamprey control personnel more exact predictions to limit potential residual lamprey surviving future treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call