Abstract

We conducted year-round, monthly monitoring of the stable isotope composition of DIC and water in hypereutrophic Lake Kierskie, western Poland, along with isotope measures of calcite collected in sediment traps installed at 16 and 30 m water depth in the lake. Isotope data were supplemented by previously published data on physico-chemical variables in the lake water column. We sought to determine how carbon and oxygen isotopic disequilibria in calcite deposited in the lake’s laminated sediments vary seasonally, and what factors drive this variability. Deposition of calcite out of equilibrium with DIC and water was documented over the entire study period. For δ18O, the disequilibrium difference between successive months far exceeded the amplitude of the seasonal variability in the isotope composition of water. The biggest difference between the measured and calculated δ13Ccalcite and δ18Ocalcite values was observed during late autumn and winter sediment resuspension and redeposition (2.4‰ and 5.4‰, respectively). In the spring, δ13Ccalcite and δ18Ocalcite offsets from equilibria, 0.5‰ and 1.3‰, respectively, resulted from rapid precipitation of large calcite crystals. During summer, intense productivity and processes related to calcifying algae (“vital effects”) caused lower δ13C (0.5–1.8‰) and δ18O (2.8–2.9‰) in calcite. Differences between isotope values of calcite collected from the two water depths were small, and might have resulted from different settling velocities of small and large crystals, and/or preferential dissolution of smaller grains. We suggest that winter laminae should be excluded from isotope studies of varved sediments whenever possible, as they likely contain redeposited carbonate in which the isotope value is not indicative of conditions in the lake at the time of laminae formation. We also recommend supplementing isotope analysis of calcite in varved lake sediments with seasonally resolved analysis of carbonate content. It appears that major shifts in the proportion of carbonate deposited across seasons can cause notable changes in mean annual values of δ18Ocalcite and δ13Ccalcite, even if DIC and water isotopic compositions remain stable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call