Abstract

AbstractTemporal variation of runoff chemistry and its seasonal controls relating to chemical weathering processes and drainage system evolution were examined at Urumqi Glacier No.1 in Xinjiang, China, over a full melt season. The dominant ions in meltwater runoff are HCO3−, Ca2+, and SO42−; and Fe, Sr, and Al are dominant elements. Concentrations of major ions and some elements show periodic variations with seasons and negatively correlate with discharge, whereas other elements (e.g., Al, Ni, Cu, Zn, Cd, and Pb) show a random change, providing insights into the hydrological and physicochemical controls. HCO3− and Ca2+ are primarily derived from calcite, SO42− and Fe mainly come from pyrite, and Sr and Al principally originate from silicate. Hydrochemical fluxes of solutes exhibit strong seasonality but are positively related to discharge, suggesting an increasing release of solutes during higher flow conditions. Solute yields, cation denudation rate, and chemical weathering intensity observed at Urumqi Glacier No.1 are higher than those at most basins worldwide. This suggests that chemical weathering in central Asia may be stronger than at other glacial basins with similar specific discharge. Concentrations of some elements (e.g., Fe, Al, As, Pb, and Zn) are close to or exceed the guidelines for drinking water standards in meltwater‐fed rivers. These rivers may face future challenges of water quality degradation, and relationships between changing flow and water quality conditions should be established soon, given that development of channelized flow is expected to be earlier over a melt season in a warming climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.