Abstract

Abstract Temporal and spatial distribution of dissolved macronutrients (ammonia, nitrate, phosphate and silica) and productivity were investigated within and around Port Foster, the flooded 160-m-deep caldera of Deception Island, Antarctica. This study was part of the Erupt Project, which included five seasonal cruises over a complete annual cycle during 1999–2000. Seawater samples were collected and physical properties were monitored from seven stations within Port Foster and 12 stations in the adjacent Bransfield Strait. In addition, shallow-water and beach interstitial-water samples were collected along the shorelines of the peripheral coves. Port Foster macronutrient/depth profiles were typical for a normal shallow seawater column in a polar region. The water column in early austral spring was well mixed and changed to a stratified water column with a weak thermocline during the summer. By early winter, the thickness of the well-mixed surface layer increased until the entire water column returned to well-mixed conditions. This early winter transition from stratified conditions to well-mixed conditions occurred in June and appeared to be abrupt. During the seasons of light limitation and low-primary productivity, local currents were effective at redistributing dissolved biochemical components throughout the bay. During the summer season, the dissolved nutrient and oxygen distributions reflected consumption of nutrients by primary producers. The mid-depth maximum observed in the ammonia profiles implies the excretion of metabolites from resident animal populations. Residence time of dissolved ammonia must have been shorter than the circulation time within Port Foster because ammonia is not as uniformly distributed during the summer months as it was during the winter and spring. Dissolved nitrate concentrations in the Bransfield Strait during this study were similar to those measured in previous studies. The mean concentrations of phosphate, nitrate, and silica in the beach interstitial samples were significantly higher (2.8–9.5 times) than in the shore, offshore and CTD samples. Possible sources for the high phosphate, nitrate, and ammonia concentrations in the beach interstitial and shore waters include decaying organic matter and bird and mammal excrement. Elevated silica concentrations appear to be associated with hydrothermal heating of beach and near-shore waters. However, the elevated macronutrient concentrations measured in the beach interstitial water were not traceable beyond 5 m of the shoreline. Phytoplankton biomass in Port Foster exhibited temporal variability similar to other coastal and continental shelf zones (CCZ) of the Antarctic Peninsula. Blooms in February and November 2000 were dominated by the centric diatoms Thalassiosira spp. and Rhizosolenia spp. Chlorophyll a (chl a ) values of 15 and 19 mg m −3 in Port Foster during these blooms were comparable to maximum-recorded levels in western Antarctic Peninsula CCZ (30–40 mg chl a m −3 ), while chl a values from November 1999 and June 2000 (non-bloom conditions) corresponded to historical monthly chl a averages of western Antarctic Peninsula CCZ ( −3 ). During blooms, phytoplankton standing stock could account for about 15 μM nitrate, which corresponds to the observed surface nitrate depletion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call