Abstract

Seasonal environmental changes have the potential to influence the genetic structure of species with a short generation time, such as Drosophila. We previously found the seasonal change in linkage disequilibrium (LD) between the chemoreceptor (Cr) genes in a local Japanese population (Kyoto [KY]). This could be caused by fluctuation in the population size or selection in temporally heterogeneous environments or both. Here, we analyzed the scale of LD between 51 X-linked polymorphisms (10 Cr and 41 non-Cr gene markers) in the 2 seasonal samples from the KY population and an autumn sample from 106 localities in and around Japan (Ja03au). Many of the non-Cr genes have receptor function but fewer functional connections to each other. The magnitude of LD in Ja03au did not significantly differ from that in the KY autumn sample. The lack of local differentiation was confirmed in an autumn sample from another local Japanese population. On the other hand, the magnitude of LD was significantly larger in spring than in autumn in the 2 independent KY samples. This suggests that reduction in the population size during winter increased the magnitude of LD in spring in the mainland population in Japan. Long-distance LD could be a useful measure for assessing seasonal fluctuation in effective population size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call