Abstract
RFamide-related peptide-3 (RFRP-3) neurons have been shown to inhibit gonadotropin-releasing hormone (GnRH) neuronal activity and hence reproduction in birds and eutherian mammals. They have also been proposed to have a direct hypophysiotropic effect on pituitary gonadotropin release. We used a new RFRP-3 antibody to characterize the cell body distribution and fiber projections of RFRP-3 neurons in the adult female brushtail possum brain. RFRP-3-immunoreactive cell bodies were found scattered within the dorsomedial hypothalamus and the dorsomedial half of the ventromedial hypothalamus, while GnRH neurons were observed scattered rostrocaudally along the lateral septum, rostral to the medial septum. There was a significant 2-fold increase in the RFRP-3 cell body number during the nonbreeding season (summer) compared to the breeding season (winter). Immunoreactive RFRP-3 fibers were distributed throughout the thalamus, preoptic area, and hypothalamus. Very few fibers were observed in the median eminence, especially in the external zone. Intraperitoneal injection of the retrograde tracer Fluoro-Gold resulted in the labeling of 40% of hypophysiotropic tuberoinfundibular dopaminergic (tyrosine hydroxylase-positive) neurons; however, <10% of zona incerta dopaminergic neurons (which are not hypophysiotropic) or RFRP-3 neurons were labeled with this tracer. These observations suggest that RFRP-3 exhibits a seasonal fluctuation in cell numbers, as seen in sheep and birds, which is consistent with an increased inhibitory tone during the nonbreeding season. The lack of RFRP-3 fibers in the median eminence and of Fluoro-Gold uptake from the periphery imply that the actions of this peptide occur primarily centrally rather than at the anterior pituitary gland.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.