Abstract

Suspended particulate matter was collected, from the water layer at 10cm above the sediments, over a period of 13 months in the Golfo Marconi (Ligurian Sea, NW Mediterranean). Measurements of seston concentration as well as the elemental (particulate organic carbon and nitrogen; POC and PON, respectively) and biochemical composition (lipids, proteins, carbohydrates, DNA) of particulate organic matter were carried out to assess quality and quantity of food potentially available to benthic suspension-feeders. Particulate organic matter showed wide qualitative and quantitative variations during the sampling year. Seston concentrations and POC did not reflect the quantity and quality of the food available to benthic suspension-feeders. The biopolymeric fraction of particulate matter (C-BPF, i.e. the sum of lipid, protein and carbohydrate carbon) was mostly composed of phytoplankton (which accounted for about 60% of C-BPF). The ratio of C-BPF to POC was utilized as a measure of the fraction which had the potential to be more readily available to consumers. Suspended organic matter showed higher values of the C-BPF:POC ratio during spring, and lower values in summer and autumn–winter. Quantitative estimates of the energy content of the suspended particulate matter were obtained from its biochemical composition. Bacterial dynamics were significantly related to changes in phytoplankton biomass. Bacteria accounted for a significant fraction of the biopolymeric carbon pool (annual average about 15%) and of the total particulate DNA (21·5%), thus enhancing the nutritional value of the particulate organic matter. The results achieved in this study indicate that the biochemical composition of the particulate matter provides additional information on the origin, quality and characteristics of the seston more readily available to benthic suspension-feeders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.