Abstract

The earthworm, Dendrobaena octaedra, is a common species in the uppermost soil and humus layers of coniferous forests and tundra in temperate and subarctic regions. The species is freeze-tolerant and may survive several months in a frozen state. Upon freezing, glycogen reserves are rapidly converted to glucose serving as a cryoprotectant and fuel for metabolism. In the present study we investigated the induction of freeze-tolerance under field conditions, and sought to find relationships between temperature, glycogen and fat reserves, membrane phospholipid composition and the degree of freeze-tolerance. Freeze-tolerance was induced when worms had experienced temperatures below 5 degrees C for 2 weeks or more. Freeze-tolerance was linked to the magnitude of glycogen reserves, which also fluctuated with field temperatures being highest in autumn and winter. On the other hand fat reserves seemed not to be linked with freeze-tolerance at all. However, high glycogen alone did not confer freeze-tolerance; alterations in the membrane phospholipid fatty acid composition (PLFA) were also necessary in order to secure freeze-tolerance. The changes in PLFA composition were generally similar to changes occurring in other ectothermic animals during winter acclimation with an increased degree of unsaturation of the PLFAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.