Abstract
Annual cycles of change in bud morphology, bud burst ability, abscisic acid (ABA) concentration, and starch and water content were studied in mid-crown terminal buds of short shoots and underground basal buds of Betula pubescens Ehrh. In particular, we investigated the roles of ABA and bud water content in the regulation of bud growth. Basal buds differed morphologically from terminal buds of short shoots in that their leaf initials did not develop into embryonic foliage leaves and their total size did not increase significantly during summer. Bud burst ability, measured by forcing detached short shoots and stumps under controlled conditions, was maintained in the basal buds throughout the year, whereas the terminal buds of short shoots remained dormant until October, thereafter their bud burst ability increased gradually and reached a maximum in March-April. The ABA concentration of the basal buds was relatively constant throughout the sampling period (1-3 micro g g(DW) (-1)), whereas that of the terminal buds of short shoots, which was much higher (5-10 micro g g(DW) (-1)), showed a distinct seasonal cycle with a maximum from August to November. Bud ABA concentration decreased during the first 10 days of forcing, especially in basal buds. In both bud types, the amount of starch increased toward the autumn, declined in November, and was negligible in the terminal buds of short shoots between January and March, but in April, the amount was high again in both bud types. Water content varied characteristically in both bud types, although more distinctly in the terminal buds of short shoots, with an increase in spring before bud burst and a decrease during the summer until September. The significant morphological and physiological differences between the mid-crown terminal buds of short shoots and the underground basal buds may partly explain the characteristic growth habit of the basal buds and their development into coppice shoots after cutting the tree. The results also indicate a role for ABA in maintaining dormancy of the terminal buds of short shoots and emphasize the relationship between tissue water status and ABA concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.