Abstract

Within the context of analyzing daily heavy precipitation events in the Mediterranean under enhanced greenhouse gas forcing in the 21st century, a new method considering non-stationarities in the relationships of large-scale circulation predictors and regional precipitation extremes was applied. The Mediterranean area was split into up to 22 precipitation regions, and analyses were performed separately for 3 different seasons (autumn, winter and spring) and 3 different quantiles (90th, 95th and 99th). Estimations are based on a three-step censored quantile regression. Future estimations are performed by means of 3 model runs of the Max Planck Institute Earth System Model with Low Resolution (MPI-ESM-LR) for representative concentration pathways (RCPs) 4.5 and 8.5. Overall, the Mediterranean is mainly characterized by decreasing quantile values. Especially in the regions in the southeast, declines are significant, with up to 71.7% (-1.65 mm) in the Levante region (autumn) and over 16 mm (-38.2%) on Crete (winter). Increased precipitation quantiles were only assessed for a more or less extended region in the northern parts of the Central Mediterranean (winter and spring), for the northeastern coast of the Iberian Peninsula (autumn) and for northern Spain (spring). Overall, analyses showed that non-stationarities seriously affect precipitation behavior in most parts of the Mediterranean. Results indicated that 2 different regimes (western and eastern) inducing non-stationarities are predominant in the Mediterranean area. In autumn (winter), the western (eastern) regime is limited to the Iberian Peninsula (Levante), whereas in spring, the area of influence of both regimes is of equal size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.