Abstract
With the large-scale construction of China's high-speed railway network, the demand for passenger flow is growing and varies in different seasons. Therefore, refinement operational requirements are increasingly prominent. However, the passenger flow itself has time-varying characteristics, and the division of passenger flow seasons and periods is divided by manual methods and experience subjectively. As a result, it is difficult to adjust it dynamically with the passenger flow changing dynamically. There are few studies on the seasons and periods of the division about high-speed railway passenger flow at home and abroad. In this study, the seasonal and period division methods of high-speed railway passenger flow were studied, the dynamic characteristics of passenger flow were analyzed, and the annual passenger flow fluctuation was considered. Then, the high-speed railway passenger flow was divided into seasons by using the firefly affinity propagation algorithm. Meanwhile, the high-speed railway passenger flow was divided into periods by employing the orderly clustering algorithm with the consideration of the daily passenger flow fluctuation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.